Joint distribution optimal transportation for domain adaptation

نویسندگان

  • Nicolas Courty
  • Rémi Flamary
  • Amaury Habrard
  • Alain Rakotomamonjy
چکیده

This paper deals with the unsupervised domain adaptation problem, where one wants to estimate aprediction function f in a given target domain without any labeled sample by exploiting the knowledgeavailable from a source domain where labels are known. Our work makes the following assumption: thereexists a non-linear transformation between the joint feature/label space distributions of the two domainPs andPt. We propose a solution of this problem with optimal transport, that allows to recover anestimated target Pt = (X, f(X)) by optimizing simultaneously the optimal coupling and f . We showthat our method corresponds to the minimization of a bound on the target error, and provide an efficientalgorithmic solution, for which convergence is proved. The versatility of our approach, both in terms ofclass of hypothesis or loss functions is demonstrated with real world classification and regression problems,for which we reach or surpass state-of-the-art results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DeepJDOT: Deep Joint distribution optimal transport for unsupervised domain adaptation

In computer vision, one is often confronted with problems of domain shifts, which occur when one applies a classifier trained on a source dataset to target data sharing similar characteristics (e.g. same classes), but also different latent data structures (e.g. different acquisition conditions). In such a situation, the model will perform poorly on the new data, since the classifier is speciali...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Theoretical Analysis of Domain Adaptation with Optimal Transport

Domain adaptation (DA) is an important and emerging field of machine learning that tackles the problem occurring when the distributions of training (source domain) and test (target domain) data are similar but different. Current theoretical results show that the efficiency of DA algorithms depends on their capacity of minimizing the divergence between source and target probability distributions...

متن کامل

Domain Adaptation with Regularized Optimal Transport

We present a new and original method to solve the domain adaptation problem using optimal transport. By searching for the best transportation plan between the probability distribution functions of a source and a target domain, a non-linear and invertible transformation of the learning samples can be estimated. Any standard machine learning method can then be applied on the transformed set, whic...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017